Nagy Lab
Publications
University of Utah (independent research):
51) Williamson, D. L.; Naylor, C. N.; Nagy, G. “Sequencing Sialic Acid Positioning in Gangliosides by High-Resolution Cyclic Ion Mobility Separations Coupled with Multiple Collision-Induced Dissociation-Based Tandem Mass Spectrometry Strategies.” Analytical Chemistry, 2024, DOI: 10.1021/acs.analchem.4c03411.
50) Naylor, C. N.; Nagy, G. “Recent Advances in High-Resolution Traveling Wave-Based Ion Mobility Separations Coupled to Mass Spectrometry.” Mass Spectrometry Reviews, 2024, DOI: 10.1002/mas.21902.
49) Habibi, S. C.; Bradford, V. R.; Baird, S. C.; Lucas, S. W.; Chouinard, C. D.; Nagy, G. “Development of a Cyclic Ion Mobility Spectrometry-Mass Spectrometry-Based Collision Cross Section Database of Permethylated Human Milk Oligosaccharides.” Special Issue on Biological Ion Mobility/Mass Spectrometry, Journal of Mass Spectrometry, 2024, DOI: 10.1002/jms.5076.
48) Williamson, D. L.; Windsor, H. M.; Nagy, G. “Isolating the Contributions from Moments of Inertia in Isotopic Shifts Measured by High-Resolution Cyclic Ion Mobility Separations.” Special Issue on 2024 Emerging Investigators, Journal of the American Society for Mass Spectrometry, 2024, DOI: 10.1021/jasms.4c00082.
47) Nagy, G. “High-Resolution Ion Mobility Separations Coupled to Mass Spectrometry: What’s Next?” Invited Perspective in Journal of Mass Spectrometry, 2024, 59, e5014.
46) Thurman, H. A.; Wijegunawardena, G.; Bertias, F.; Williamson, D. L.; Wu, H.; Nagy, G.; Jensen, O. N.; Shvartsbrug, A. A. “Multiplatform High-Definition Ion Mobility Separations of the Largest Epimeric Peptides.” Analytical Chemistry, 2024, 2024, 96, 2318–2326.
45) Digal, L.; Samson, S. C.; Stevens, M. A.; Ghorai, A.; Kim, H.; Mifflin, M. C.; Carney, K. R.; Williamson, D. L.; Um, S.; Nagy, G.; Oh, D.; Mendoza, M. C.; Roberts, A. G. “Non-Threaded Isomers of Sungsanpin and Ulleungdin Lasso Peptides Inhibit H1299 Cancer Cell Migration.” ACS Chemical Biology, 2024, 19, 81–88.
44) Rāciņš, O.; Nagy, G. “Implementation of Charged Microdroplet-Based Derivatization of Bile Acids on a Cyclic Ion Mobility Spectrometry-Mass Spectrometry Platform.” Analytical Methods, 2023, 15, 5577–5581.
43) Williamson, D. L.; Nagy, G. “Two-Dimensional Ion Mobility Spectrometry Approach for Carbohydrate Characterization: Coupling Isotopic Shifts with Collision Cross Section Measurements.” 2023, Analytical Chemistry, 95, 13992–14000.
42) Naylor, C. N.; Nagy, G. “Permethylation and Metal Adduction: A Toolbox for the Improved Characterization of Glycolipids with Cyclic Ion Mobility Separations Coupled to Mass Spectrometry.” 2023, Analytical Chemistry, 95, 13725–13732.
41) Habibi, S. C.; Nagy, G. “General Method to Obtain Collision Cross Section Values in Multipass High-Resolution Cyclic Ion Mobility Separations.” 2023, Analytical Chemistry, 95, 8028–8035.
40) Williamson, D. L.; Trimble, T. K.; Nagy, G. “Hydrogen Deuterium Exchange-Based Mass Distribution Shifts in High-Resolution Cyclic Ion Mobility Separations.” 2023, Journal of the American Society for Mass Spectrometry, 34, 1024–1034.
39) Habibi, S. C.; Nagy, G. “Assessing the Use of Host-Guest Chemistry in Conjunction with Cyclic Ion Mobility Separations for the Linkage-Specific Characterization of Human Milk Oligosaccharides.” 2023, International Journal of Mass Spectrometry, 483, 1–10.
38) Williamson, D. L.; Nagy, G. “Isomer and Conformer-Specific Mass Distribution-Based Isotopic Shifts in High-Resolution Cyclic Ion Mobility Separations.” Analytical Chemistry, 2022, 94, 12890–12898.
37) Williamson, D. L.; Nagy, G. “Evaluating the Utility of Temporal Compression in High-Resolution Traveling Wave-Based Cyclic Ion Mobility Separations.” ACS Measurement Science Au, 2022, 2, 361–369.
36) Williamson, D. L.; Bergman, A. E.; Heider, E. C.; Nagy, G. “Experimental Measurements of Relative Mobility Shifts Resulting from Isotopic Substitutions with High-Resolution Cyclic Ion Mobility Separations.” Analytical Chemistry, 2022, 94, 2988–2995.
35) Peterson, T. L.; Nagy, G. “Rapid Cyclic Ion Mobility Separations of Monosaccharide Building Blocks as a First Step toward a High-Throughput Reaction Screening Platform for Carbohydrate Syntheses.” RSC Advances, 2021, 11, 39742–39747.
34) Williamson, D. L.; Bergman, A. E.; Nagy, G. “Investigating the Structure of a/b Carbohydrate Linkage Isomers as a Function of Group I Metal Adduction and Degree of Polymerization as Revealed by Cyclic Ion Mobility Separations.” Journal of the American Society for Mass Spectrometry, 2021, 32, 2573–2582.
33) Peterson, T. L.; Nagy, G. “Towards Sequencing the Human Milk Glycome: High-Resolution Cyclic Ion Mobility Separations of Core Human Milk Oligosaccharide Building Blocks.” Analytical Chemistry, 2021, 93, 9397–9407.
Graduate and post-doctoral (mentored research):
32) Hollerbach, A. L.; Conant, C. R.; Nagy, G.; Ibrahim, Y.M. “Implementation of Ion Mobility Spectrometry-Based Separations in Structures for Lossless Ion Manipulations (SLIM).” In Biomedical Engineering Technologies. Methods in Molecular Biology, ed. Rasooly, A.; Baker, H., 2022, Vol. 2394. pp. 453–469.
31) Harrilal, C. P.; Gandhi, V. D.; Nagy, G.; Chen, X.; Buchanan, M. G.; Wojcik, R.; Conant, C. R.; Donor, M. T.; Ibrahim, Y. M.; Garimella, S. V. B.; Smith, R. D.; Larriba-Andaluz, C. “Measurement and Theory of Gas Phase Ion Mobility Shifts Resulting from Isotopomer Mass Distribution Changes.” Analytical Chemistry, 2021, 93, 14966–14975.
30) Hollerbach, A. L.; Conant, C. R.; Nagy, G.; Monroe, M. E.; Gupta, K.; Donor, M.; Giberson, C. M.; Garimella, S. V. B.; Smith, R. D.; Ibrahim, Y. M. “Dynamic Time-Warping Correction for Shifts in Ultrahigh Resolving Power Ion Mobility Spectrometry and Structures for Lossless Ion Manipulations.” Journal of the American Society for Mass Spectrometry, 2021, 32, 996–1007.
29) Conant, C. R.; Attah, I. K.; Garimella, S. V. B.; Nagy, G.; Bilbao, A.; Smith, R. D.; Ibrahim, Y. M. “Evaluation of Waveform Profiles for Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations.” Journal of the American Society for Mass Spectrometry, 2020, 32, 225–236.
28) Li, A.; Conant, C. R.; Zheng, X.; Bloodsworth, K. J.; Orton, D. J.; Garimella, S. V. B.; Attah, I. K.; Nagy, G.; Smith, R. D.; Ibrahim, Y. M. “Assessing Collision Cross Section Calibration Strategies for Traveling Wave-Based Ion Mobility Separations in Structures for Lossless Ion Manipulations.” Analytical Chemistry, 2020, 92, 14976–14982.
27) Li, A.; Nagy, G.; Conant, C. R.; Norheim, R. V.; Yong Lee, J.; Giberson, C.; Hollerbach, A. L.; Prabhakaran, V.; Attah, I. K.; Chouinard, C. D.; Prabhakaran, A.; Smith, R. D.; Ibrahim, Y. M.; Garimella, S. V. B. “Ion Mobility Spectrometry with High Ion Utilization Efficiency Using Traveling Wave-Based Structures for Lossless Ion Manipulations.” Analytical Chemistry, 2020, 92, 14930–14928.
26) Hollerbach, A. L.; Li, A.; Prabhakaran, A.; Nagy, G.; Harrilal, C. P.; Conant, C. R.; Norheim, R. V.; Schimelfenig, C. E.; Anderson, G. A.; Garimella, S. V. B.; Smith, R. D.; Ibrahim, Y. M. “Ultra-High Resolution Ion Mobility Separations Over Extended Path Lengths and Mobility Ranges Achieved using a Multilevel Structures for Lossless Ion Manipulations (SLIM) Module.” Analytical Chemistry, 2020, 92, 7972–7979.
25) Nagy, G.; Attah, I. K.; Conant, C. R.; Liu, W.; Garimella, S. V. B.; Gunawardena, H. P.; Shaw, J. B.; Smith, R. D.; Ibrahim, Y. M. “Rapid and Simultaneous Characterization of Drug Conjugation in Heavy and Light Chains of a Monoclonal Antibody Revealed by High-Resolution Ion Mobility Separations in SLIM.” Analytical Chemistry, 2020, 92, 5004–5012.
24) *Wojcik, R.; *Nagy, G.; Attah, I. K.; Webb, I. K.; Garimella, S. V. B.; Weitz, K. K.; Hollerbach, A.; Monroe, M. E.; Ligare, M. R.; Nielson, F. F.; Norheim, R. V.; Renslow, R. S.; Metz, T. O.; Ibrahim, Y. M.; Smith, R. D. “SLIM Ultrahigh Resolution Ion Mobility Spectrometry Separations of Isotopologues and Isotopomers Reveal Mobility Shifts due to Mass Distribution Changes.” Analytical Chemistry, 2019, 91, 11952–11962. (* Co-first author).
23) Attah, I. K.; Nagy, G.; Garimella, S. V. B.; Norheim, R. V.; Anderson, G. A.; Ibrahim, Y. M.; Smith, R. D. “Traveling wave-based electrodynamic switch for concurrent dual polarity ion manipulations in Structures for Lossless Ion Manipulations.” Analytical Chemistry, 2019, 91, 14712–14718.
22) *Garimella, S. V. B.; *Nagy, G.; Ibrahim, Y. I.; Smith, R. D. “Opening New Paths for Biological Applications of Ion Mobility-Mass Spectrometry using Structures for Lossless Ion Manipulations.” Trends in Analytical Chemistry, 2019, 116, 300–307. (*Co-first author).
21) Nagy, G.; Kedia, K.; Attah, I. K.; Garimella, S. V. B.; Ibrahim, Y. M.; Petyuk, V. A.; Smith, R. D. “Separation of b-Amyloid Tryptic Peptide Species with Isomerized and Racemized L-Aspartic Residues with Ion Mobility in Structures for Lossless Ion Manipulations.” Analytical Chemistry, 2019, 91, 4374–4380.
20) *Nagy, G.; *Veličković, D.; Chu, R. K.; Carrell, A. A.; Weston, D. J.; Ibrahim, Y. M.; Anderton, C. R.; Smith, R. D. “Towards Resolving the Spatial Metabolome with Unambiguous Molecular Annotations in Complex Biological Systems by Coupling Mass Spectrometry Imaging with Structures for Lossless Ion Manipulations.” Chemical Communications, 2019, 55, 306–309. (* Co-first author).
19) Attah, I. K.; Garimella, S. V. B.; Webb, I. K.; Nagy, G.; Norheim, R. V.; Schimelfenig, C. E.; Ibrahim, Y. M.; Smith, R. D. “Dual Polarity Ion Confinement and Mobility Separations.” Journal of the American Society for Mass Spectrometry, 2019, 30, 967–976.
18) Wooke, Z.; Nagy, G.; Barnes, L. F.; Pohl, N. L. B. “Development of a Post-Column Liquid Chromatographic Chiral Addition Method for the Separation and Resolution of Common Mammalian Monosaccharides.” Journal of the American Society for Mass Spectrometry, 2019, 30, 419–425.
17) Chouinard, C. D.; Nagy, G.; Smith, R. D.; Baker, E. S. “Ion Mobility-Mass Spectrometry in Metabolomic, Lipidomic, and Proteomic Analyses.” in Comprehensive Analytical Chemistry: Advances in Ion Mobility-Mass Spectrometry: Fundamentals, Instrumentation and Applications, ed. Barcelo, D., 2019, Vol. 83, pp. 123–159.
16) Couvillion, S. P.; Zhu, Y.; Nagy, G.; Adkins, J. A.; Ansong, C.; Renslow, R. S.; Piehowski, P. D.; Ibrahim, Y. M.; Kelly, R. T.; Metz, T. O. “New Mass Spectrometry Technologies Contributing Towards Comprehensive and High Throughput Omics Analyses of Single Cells.” Analyst, 2019, 144, 794–807.
15) Garcellano, R. C.; Moinuddin, S. G. A.; Young, R. P.; Zhou, M.; Bowder, M. E.; Renslow, R. S.; Yesiltepe, Y.; Thomas, D. G.; Colby, S. M.; Chouinard, C. D.; Nagy, G.; Attah, I. K.; Ibrahim, Y. M.; Ma, R.; Franzblau, S. G.; Lewis, N. G.; Aguinaldo, A. M.; Cort, J. R. “Isolation of Tryptanthrin and Reassessment of Evidence for Its Isobaric Isotere Wrightiadione in Plants of the Wrightia Genus.” Journal of Natural Products, 2019, 82, 440–448.
14) Dou, M.; Chouinard, C. D.; Zhu, Y.; Nagy, G.; Liyu, A. V.; Ibrahim, Y. M.; Smith, R. D.; Kelly, R. T. “Nanowell-Mediated Multidimensional Separations Combining NanoLC with SLIM IM-MS for Rapid, High-Peak Capacity Proteomic Analyses.” Analytical and Bioanalytical Chemistry, 2019, 411, 5363–5372.
13) Nagy, G.; Attah, I. K.; Garimella, S. V. B.; Tang, K.; Ibrahim, Y. M.; Baker, E. S.; Smith, R. D. “Unraveling the Isomeric Heterogeneity of Glycans: Ion Mobility Separations in Structures for Lossless Ion Manipulations.” Chemical Communications, 2018, 54, 11701–11704.
12) Nagy, G.; Chouinard, C. D.; Attah, I. K.; Webb, I. K.; Garimella, S. V. B.; Ibrahim, Y. M.; Baker, E. S.; Smith, R. D. “Distinguishing Enantiomeric Amino Acids with Chiral Cyclodextrin Adducts and Structures for Lossless Ion Manipulations.” Electrophoresis, 2018, 39, 3148–3155.
11) *Chouinard, C. D.; *Nagy, G.; Webb, I. K.; Garimella, S. V. B.; Baker, E. S.; Ibrahim, Y. M.; Smith, R. D. “Rapid Ion Mobility Separations of Bile Acid Isomers using Cyclodextrin Adducts and Structures for Lossless Ion Manipulations.” Analytical Chemistry, 2018, 90 11086–11091. (* Co-first author).
10) *Chouinard, C. D.; *Nagy, G.; Webb, I. K.; Shi, T.; Baker, E. S.; Prost, S. A.; Liu, T.; Ibrahim, Y. M.; Smith, R. D. “Improved Sensitivity and Separations for Phosphopeptides using Online LC Coupled with Structures for Lossless (SLIM) IM-MS.” Analytical Chemistry, 2018, 90, 10889–10896. (* Co-first author).
9) *Nagy, G.; *Peng, T.; Pohl, N. L. B. “Recent Liquid Chromatographic Approaches and Developments for the Separation and Purification of Carbohydrates.” Analytical Methods, 2017, 9, 3579–3593. (*Co-first author).
8) Gaunitz, S.; Nagy, G.; Pohl, N. L. B.; Novotny, M. V. “Recent Advances in the Analysis of Complex Glycoproteins.” Analytical Chemistry, 2017, 89, 389–413.
7) Peng, T.; Nagy, G.; Trinidad, J. C.; Jackson, J. M.; Pohl, N. L. B. “A High- Throughput Mass-Spectrometry-Based Assay for Identifying the Biochemical Functions of Putative Glycosidases.” ChemBioChem, 2017, 18, 2306–2311.
6) Schenk, J.; Nagy, G.; Pohl, N. L. B.; Leghissa, A.; Smuts, J.; Schug, K. A. “Identification and Deconvolution of Carbohydrates using Gas Chromatography-Vacuum Ultraviolet Spectroscopy.” Journal of Chromatography A, 2017, 1513, 210–221.
5) *Nagy, G.; *Peng, T.; Kabotso, D. E. K.; Novotny, M. V.; Pohl, N. L. B. “Protocol for the Purification of Protected Carbohydrates: Toward Coupling Automated Synthesis to Alternate-Pump Recycling High-Performance Liquid Chromatography.” Chemical Communications, 2016, 52, 13253–13256. (* Co-first author).
4) *Nagy, G.; *Peng, T.; Pohl, N. L. B. “General Label-Free Mass Spectrometry-Based Assay to Identify Glycosidase Substrate Competence.” Analytical Chemistry, 2016, 88, 7183–7190. (* Co-first author).
3) Gaye, M. M.; Nagy, G.; Clemmer, D. E.; Pohl, N. L. B. “Multidimensional Analysis of 16 Glucose Isomers by Ion Mobility Spectrometry.” Analytical Chemistry, 2016, 88, 2335–2344.
2) Nagy, G.; Pohl, N. L. B. “Monosaccharide Identification as a First Step Toward de novo Carbohydrate Sequencing: Mass Spectrometry Strategy for the Identification and Differentiation of Diastereomeric and Enantiomeric Pentose Isomers.” Analytical Chemistry, 2015, 87, 4566–4571.
1) Nagy, G.; Pohl, N. L. B. “Complete Hexose Identification with Mass Spectrometry.” Journal of the American Society for Mass Spectrometry, 2015, 26, 677–685.